PAGE
3

Chapter 23: Database Recovery Techniques

CHAPTER 23: DATABASE RECOVERY TECHNIQUES

Answers to Selected Exercises

23.21 - Suppose that the system crashes before the [read_item,T3,A] entry is written to

the log in Figure 23.1 (b); will that make any difference in the recovery process?

Answer:

There will be no difference in the recovery process, because read_item operations are

needed only for determining if cascading rollback of additional transactions is necessary.

23.22 - Suppose that the system crashes before the [write_item,T2,D,25,26] entry is

written to the log in Figure 23.1 (b); will that make any difference in the recovery process?

Answer:

Since both transactions T2 and T3 are not yet committed, they have to be rolled back

during the recovery process.

23.23 - Figure 23.6 shows the log corresponding to a particular schedule at the point of a

system crash for the four transactions T1, T2, T3, and T4 of Figure 19.4. Suppose that we use the immediate update protocol with checkpointing. Describe the recovery process from the system crash. Specify which transactions are rolled back, which operations in the log are redone and which (if any) are undone, and whether any cascading rollback takes place.

Answer:

First, we note that this schedule is not recoverable, since transaction T4 has read the

value of B written by T2, and then T4 committed before T2 committed. Similarly,

transaction T4 has read the value of A written by T3, and then T4 committed before T3

committed. The [commit, T4] should not be allowed in the schedule if a recoverable

protocol is used, but should be postponed till after T2 and T3 commit. For this problem,

let us assume that we can roll back a committed transaction in a non-recoverable

schedule, such as the one shown in Figure 21.7.

By using the procedure RIU_M (recovery using immediate updates for a multiuser

environment), the following result is obtained:

From Step 1 of procedure RIU_M, T2 and T3 are the active transactions. T1 was

committed before the checkpoint and hence is not involved in the recovery.

From Step 2, the operations that are to be undone are:

[write_item,T2,D,25]

[write_item,T3,A,30]

[write_item,T2,B,12]

Note that the operations should be undone in the reverse of the order in which they were

written into the log. Now since T4 read item B that as written by T2 and read item A that

as written by T3, and since T2 and T3 will be rolled back, by the cascading rollback

rule, T4 must be also rolled back. Hence, the following T4 operations must also be

undone:

[write_item,T4,A,20]

[write_item,T4,B,15]

(Note that if the schedule was recoverable and T4 was committed, then from Step 3, the

operations that are to be redone would have been:

[write_item,T4,B,15]

[write_item,T4,A,20]

In our case of non-recoverable schedule, no operations need to be redone in this

example.)

At the point of system crash, transactions T2 and T3 are not committed yet. Hence, when

T2 is rolled back, transaction T4 should also be rolled back as T4 reads the values of

items B and A that were written by transactions T2 and T3. The write operations of T4

have to be undone in their correct order. Hence, the operations are undone in the

following order:

[write_item,T2,D,25]

[write_item,T4,A,20]

[write_item,T3,A,30]

[write_item,T4,B,15]

[write_item,T2,B,12]

23.24 - Suppose that we use the deferred update protocol for the example in Figure 23.6.

Show how the log would be different in the case of deferred update by removing the unnecessary log entries; then describe the recovery process, using your modified log. Assume that only redo operations are applied, and specify which operations in the log are redone and which are ignored.

Answer:

In the case of deferred update, the write operations of uncommitted transactions are not

recorded in the database until the transactions commit. Hence, the write operations of T2

and T3 would not have been applied to the database and so T4 would have read the

previous (committed) values of items A and B, thus leading to a recoverable schedule.

By using the procedure RDU_M (deferred update with concurrent execution in a

multiuser environment), the following result is obtained:

The list of committed transactions T since the last checkpoint contains only transaction

T4. The list of active transactions T' contains transactions T2 and T3.

Only the WRITE operations of the committed transactions are to be redone. Hence, REDO

is applied to:

[write_item,T4,B,15]

[write_item,T4,A,20]

The transactions that are active and did not commit i.e., transactions T2 and T3 are

canceled and must be resubmitted. Their operations do not have to be undone since they

were never applied to the database.

23.25 - How does checkpointing in ARIES differ from checkpointing as described in Section 23.1.4?

Answer:

The main difference is that with ARIES, main memory buffers that have been modified are not flushed to disk. ARIES, however writes additional information to the LOG in the form of a

Transaction Table and a Dirty Page Table when a checkpoint occurs.

23.26 - How are log sequence numbers used by ARIES to reduce the amount of REDO work needed for recovery? Illustrate with an example using the information shown in Figure 23.5. You can make your own assumptions as to when a page is written to disk.

Answer:

Since ARIES writes the Dirty Page Table to the LOG at checkpoint time, ARIES can use the LSN (log sequence number) information stored in that table and the data pages during recovery.

REDO only has to start after the point where all prior changes are known to be in the database. Hence, REDO can start at the place in the LOG that corresponds to the smallest LSN from the Dirty Page Table.

In Figure 23.5, since the smallest LSN in the Dirty Page Table is 1, REDO must start at location 1 in the LOG. Let's assume that when Transaction T2 performed the update of page C, page C was written to disk. So, page C on disk would have an associated LSN of 7. When REDO starts at location 1 in the LOG (LSN of 1), page C would be read into the main memory buffer, however no change is necessary since the the LSN of page C is 7, which is larger than LSN of 1 for the current LOG update operation. Proceeding with location 2

in the LOG, page B would be brought into memory. If the LSN of page B is less than 2, then page B would be updated with the corresponding change in location 2 in the LOG. Similarly for location 6, page A would be updated. For location 7, Page C need not be updated since the LSN of page C (i.e., 7) is not less than the LSN of the current LOG update operation.

23.27 - What implications would a no-steal/force buffer management policy have on checkpointing and recovery?

Answer:

No-steal means that the cache (buffer) page updated by a transaction cannot be written to disk before the transaction commits. Force means that updated pages are written to disk when a transaction commits.

With No-steal, the checkpoint scheme that writes all modified main memory buffers to disk would not be able to write pages updated by uncommitted transactions.

With Force, once a transaction is done, its updates would be pushed to disk. If there is a failure during this, REDO is still needed; however, no UNDO is needed since uncommitted updates are never propagated to disk.

Solutions for 23.28 – 23.37:

23.28 (b)

23.29 (b)

23.30 (b)

23.31 (a)

23.32 (c)

23.33 (a)

23.34 (c)

23.35 (d)

23.36 (b)

23.37 (b)

PAGE
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.

